Oscillation criteria for nonlinear neutral
hyperbolic equations with functional
arguments
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Abstract

This paper is devoted to the study of oscillatory behavior of solutions
to nonlinear neutral hyperbolic equations with functional arguments by us-
ing the integral averaging method and generalized Riccati techniques. First,
we establish oscillation results for nonlinear neutral hyperbolic equations by
reducing the multi-dimensional oscillation problems to one-dimensional oscil-
lation problems for functional differential inequalities. Secondly, we present
oscillation results for nonlinear neutral hyperbolic equations by utilizing Ric-
cati techniques.
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1. Introduction

Consider the hyperbolic equation with functional arguments

(E) %(r(t)%( xt)—i—Zh w(z, p(t )))

t)Au(z,t) — Zb (t)Au(z, 74(2))

+Zqi($,t)goi(u($,ai(t))) =0, (z,t) € Q2= G x (0,00),
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where A is the Laplacian in R™ and G is a bounded domain of R™ with
piecewise smooth boundary dG, and the following Dirichlet and Robin (cf.
[10]) boundary conditions:

(B1) u=0 on  9G x [0,00),
(B2) % +pu=0 on 9G x [0, 00),

where v denotes the unit exterior normal vector to G and p € C(0G x
[0,00); [0, 00)).
Throughout this paper we assume that:

A)]r(t) € CH([0,00); (0, 00)),

hi(t) € C?([0,00);[0,00)) (6 =1,2,...,1),

alt), bi(t) € C([0,00);0,00)) (i = 1,2, ..., k),

%(:C:t) € C(Qa [U,OO)) (?‘ = 1721' £ 3 :m); pz(i) L5 02([01 OO)aR): thm pz(t) =
s (i=1,2...,0),

7:(t) € C([0, co); R), tlim lt) = e (L=1,38, ... ;&)

oi(t) € C([0, 00); R), tlim oi(t) =c0 (i=1,2,...,m); p,(s) € CL{R; R) (i =
1,2,...,m) are convex in (0,00) and ;(—s) = —¢,(s) for s > 0.

Definition 1. By a solution of Eq. (E) we mean a function u € C?(Gx
[t_1,00)) N C(G x [t_1,00)) which satisfies (E), where

t_1 = min {0, min, {gg pi(t)} ) i {gg n-(t)}} :
t_; = min {O, min {inf ai(t)}} )
1<i<m | t>0

Definition 2. A solution u of Eq. (E) is said to be oscillatory in §2 if u has
a zero in G x (¢, 00) for any ¢ > 0.

Definition 3. We say that the functions (H;, H,) belong to a function class
H, denoted by (Hy, Ha) € H, if (Hy, Hz) € C(D;[0,00)) satisfy

Ht0) =10 Hilf,8)>0 (=12 dfott>§

where D = {(t,5) : 0 < s <t < 0o}, and the partial derivatives 9H, /0t and
0H,/8s exist on D such that

o,

T (s,t) = hi(s,t)Hi(s,t) and %(t,s) = —ha(t, s)Ha(t, s),

Js
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for some functions hy, hs € Cie(D;R), where Cioe(D;R) denotes the set of
all locally continuous functions on D.

In recent years there has been much research activity concerning the os-
cillation theory of nonlinear hyperbolic equations with functional arguments
by employing Riccati techniques. Riccati techniques were used to obtain var-
ious oscillation results (cf. Mafik [9], Yoshida [15]). For example, we note
that Kamenev-type oscillation criteria for hyperbolic equations have been
obtained in [3,6,12,14]. On the other hand, interval oscillation criteria for
second order differential equation have been investigated by many authors
(1,3,5,6,8,12,13]. In particular, Wang, Meng and Liu [12,13] applied interval
oscillation criteria to linear hyperbolic equations with functional arguments.
Recently, Cui and Xu [1] presented oscillation criteria for hyperbolic equa-
tions which are not of neutral type. It seems that there are no known os-
cillation results for hyperbolic equations of neutral type, which are obtained
by Riccati techniques.

The objective of this paper is to establish oscillation ceireria for the non-
linear neutral hyperbolic equation with functional arguments (E) by employ-
ing the Riccati method.

In Section 2 we reduce our problems to one-dimensional problems for
functional differential inequalities, and second order functional differential
inequalities are investigated in Section 3 via Riccati inequalities. We present
oscillation results for (E) in Section 4 by combining the results of Sections 2
and 3. Two examples which illustrate our main theorems are given in Section
5.

2. Reduction to one-dimensional problems

In this section we reduce the multi-dimensional oscillation problems for
(E) to one-dimensional oscillation problems. It is known that the first eigen-
value A; of the eigenvalue problem

—Aw = w in G,
w=0 on 0G

is positive, and the corresponding eigenfunction ®(x) can be chosen so that
®(z) > 0in G. Now we let

¢;(t) = min g;(z, t).
z€G
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With each solution u(z,t) of the problem (E), (B1) or (E), (B2) we associate
functions U(t) and U(t) respectively, defined by

Jit) = Kq,/u(a:,t)(b(w)d:c,
G

~ 1

5 = i /G i, B,

where Ko = ([; ®(z)dz)™" and |G| = [, dz.
Theorem 1. If the functional differential inequality

i m
% (T(L‘)% (y(t) +Zhi(t)y(p¢(t)))) + 2 aBel@) <0 (1)

has no eventually positive solutions, then every solution u(z,t) of the problem
(E), (B1) is oscillatory in Q.

Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (E), (B1). Without loss of generality we may assume
that u(z,t) > 0 in G x [t,00) for some t; > 0. (The case where u(z,t) <
0 can be treated similarly). Since (A2) holds, we see that u(z,p,(¢)) >
0@ =12,...,0),uzmt) >0 (E=12..,k) and u(z,0:(t)) > 0 (i =
1,2,...,m) in G x [t;,00) for some t; > ;. Multiplying (E) by Ko®(z) and
integrating over GG, we obtain

l

dit (T(t)% (U(t) + Zhi(t)U(pi(t))))

i=1
m

—a(t) Ke /G Aulz,12(z)ds — Y b()Ko /G Aot ) Bl
+ Z Ks /(;qi(m, t)o(u(z, 0:(t))®(z)dz = 0, t > t;. (2)
From Green’s formula it follows that
Ko / Au(z, )®(z)dz = —\U() <0, t > t, (3)
G
Ks f Aulz, 7i(8)8(@)de = —MU(rs() <0, t> 4. (4)
G
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Using the Jensen’s inequality we observe that

ZK@ / 0@, ), (u(z, 0.,(1))) B()dz > Zqz Do), t= t, (5)

and combining (2)-(5), it follows that

%(T(t ( tHEh p@(t))))Jqul 0:(U(0:(£)) <0, t > #,.

Therefore U(t) is an eventually positive solution of (1). This is a contradiction
and the proof is complete.

Theorem 2. If the functional differential inequality (1) has no eventually
positive solutions, then every solution u(z,t) of the problem (E), (B2) is
oscillatory in 2.

Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (E), (B2). Without loss of generality we may assume
that u(z,t) > 0 in G X [tg,00) for some t; > 0. Since (A2) holds, we see
that ‘wlz. o)) > 0 (= 1,2, .. 0}, uwlzeri(t)) > 0 (= 1,2,...,k) and
u(z,oi(t)) >0 (i=1,2,. ) in G x [t;,00) for some ¢; > tp. Dividing (E)
by |G| and integratmg over G we obtain

!
Ci (’r(t)% (ﬁ(t) + ; hi(t)g(pi(t))))

k

_a(t) e bi() i e E i
e /Au(m £)do Z ° fA (=l

LGlév_:/.qisctcpzu(:z:U,,(t)))w—O by, (6)
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It follows from Green’s formula that

du
Al tide = —(z,t)dS
| e, [ e
= / pul(z, t)u(z, t)dS <0, t > 1, (7)
aG
/ Aailz, my(t)dz = 6—u($,'ri(t))d5
G ag Ov

— —f ple, () ulz, m(E))dS <0, t >4,  (8)
oG

Using the Jensen’s inequality, we observe that

Z Ko /(;qi(iﬂ,t)%(u(xagi(t)))dﬁ > > a@eU(0:®), t>t,  (9)

=1

and combining (6)—(9), it follows that

l m
- (r(t)d% (ﬁ(t) +y m(ﬂm(m)) + L ate0o) <0, L2 0

=1

Therefore U(t) is an eventually positive solution of (1). This is a contradiction
and the proof is complete.

3. Second order functional differential inequalities

In this section we establish sufficient conditions for every solution y(t)
of the functional differential inequality (1) to have no eventually positive
solution. We assume the following hypotheses:

(A1JA2{A3) For some j € {1,2,...,m}, there exists a positive constants ¢

such that
oi(t) >0 and o;(t) <t,

and @;(s) € C'((0,00);(0,00)), ¥j(s) > 0 and )(s) is nondecreasing for

s> 0;
1
f ——dt = oo;
to 'f‘(t)

116



!
D ) <1
i=1

3E) = P12 v B
Theorem 3. Assume that the hypotheses (A4)-(A7) hold, and moreover
assume that

©;(5152) > ©;1(51)ps9(52) for s1 > 0, 82 > 0, where p;1(s) € C([0,00);
[0,00)), @jo(s) € CH((0,00); (0,00)) and ;5(s) is nondecreasing for s > 0.
If the Riccati inegualily

1. I
ZPR—(‘&)

Z'(t) + 22(£) < —Q(t) (10)

for some K > 0 and all large T, has no solution on [T',00), where

Pr(t) = ﬂ%{%ﬁ (11)

Q) = g(t)en (1 - th(ffj(t))) , (12)

then (1) has no eventually positive solutions.
Proof. Suppose that y(t) is a positive solution of (1) on [tg, c0) for some
to > 0. From (1), there exists a j € {1,2,...,m} such that

° (T(t)% (y(t) + Zw)y(pz(m)) + 400,050 <0, 12 1o

i=1
If we define the function

l

2(t) = y(t) + D ha(t)y(ps(1)), (13)

then we see that
(r)2'(£)) < —¢;(V)p;(y(0;(2))) £ 0, t = to. (14)

Since (r(t)z'(t))" < 0, z(t) > 0 eventually, we observe, using the hypothesis
(A5), that 2/(¢) > 0 (t > t;) for some t; > ty (cf. [13, Lemma 2.2]). Hence
r(t)2'(t) is nonincreasing. Then, we find that z'(t) > 0 or 2'(¢j < 0 for
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t > t; > tp. First we assume that 2/(t) < 0 for ¢ > t;. From the well known
argument (cf. [13]) we prove that 2/(¢) > 0 for ¢ > t;. Taking into account
(A6) and (AT), from (13) we see that (cf. Yoshida [15])

y(t) > (1 = Z hi(t ) 2(t), t> 1. (15)

In view of (14) and (15), we observe that

l

(r(©)7'(®) + ;)5 (1 = Zhi(dj(t))) Pi(2(05(1)) <0, T = 1.

Setting B
r(t)2' (¢
M) = o el )
we show that
o OZQY o dh(alo(0)2 05050
R EC) IR g

(sz( (o;(¢)
(

Since z(t) > 0, 2'(t) > 0 eventually, it follows that 2(c;(t)) > ko for some
ko > 0. Hence we observe that

Pia(2(0;5(1)) = @la(ko) = K. (17)
Substituting (17) into (16), we get

wl(t) < *Qj(t)‘le (1 = Z hi(aj(t)))

—KJT(i)z’(t);?m—g%))T), t >t

On the other hand, (14) implies that
r(o;(8))7'(0;(2)) = r(2)2'(2),

and hence

oy l
W)+ (i"))) W) < ~4;()en (1 . men) 09

r(o;(t
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for t > t;. That is, w(t) is a solution of (10) on [t1, c0). This is a contradiction
and the proof is complete.

Theorem 4. Assume that the hypotheses (A4)-(A8) hold. If for each T >0
and some K > 0, there exist (Hy, Hy) € H, ¥(t) € C*((0,00); (0,00)) and
a,b,ce R such that T <a<c<band

: ) /C Hi(s,a) {Q(S) - %T((}gf)))\f(s,a)} (s)ds

Hy(c,a) Ja
+H2(1bc)f Hz(b,s){@() ir(c;irs))ﬂb )}?J)(S)ds>0, i
where
_ ¥
)\1(5=t) = '{b(S)+hl( )
O
Ao(t,8) = o) halt, 5).

Then (1) has no eventually positive solutions.

Proof. Suppose that y(t) is a positive solution of (1) on [ty, 00) for some
to > 0. At first, we assume that y(¢) > 0 on (a,b). Proceeding as in the
proof of Theorem 3, we see that there exists a function w(s) which satisfies

_ Ko
r(a;(s))
Multiplying (20) by H»(t, s) and integrating over [c, ] for ¢ € [¢, b), we have

[ H(t,$)Q(s)b(s)ds

Z = f Hi, Sy (e (el / Hy(t,5) ( g (su(e)ds
( (s))
Ko

w?(s)w(s). (20)

< H(t,cw sz s)Aa(t

-/ Hg(t,s){ %w(s)—%\g(t,s) ”‘}gf”} (s)ds,
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and so

[ e {@(s) _ Lrlos(®) sy s)} IS (U

Hg(t,C) 4 Ko’

Letting t — b~ in the last inequality, we obtain

L 17(05(s)) |
H5,0) / Hz(b,s){Q(s)gl o /\g(b,s)}w(s)dssw(c)w(c). (21)

On the other hand, multiplying (20) by H;(s,t) and integrating over [t, | for
t € (a, ¢, we obtain

chlstQjS
< ]Hlst)w fﬂls) w?(s)(s)ds
< —Hi(e, Hw(e)w(c) + /Hlst/\2 T(g“" )%b(S)dS

]Hlst){ UJ(S)) ) e -;—Al(s,t) ﬂ%} s}l

and therefore

W 17(04(5)) 2
Hl(c,t)ft Ha(s,t) {Q(s)4 o Al(s,t)}w(s)dsg_w(c)q,[,(c).

Letting t — a™ in the last inequality, we obtain

e ), e - ;760 v < ~weue
(22)
Adding (21) and (22), we obtain the following

0 {00 - 1Dt

+H2(b,c)/ 0 5){ (5) iT(Ki))“\Z(b )}dsgo’
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which contradicts the condition (19). Pick up a sequence {7;} C [tp, o0) such
that T; — oo as ¢ — oco. By the assumptions, for each ¢ € N, there exists
a;, b;, ¢; € [0,00) such that T; < a; < ¢; < b;, and (19) holds with a, b, ¢
replaced by a;, b;, ¢;, respectively. Therefore, every nontrivial solution y(t)
of (1) has at least one zero ¢; € (a;,b;). Noting that t; > a; > T3, i € N, we

see that y(t) is an oscillatory solution of (1). This is a contradiction and the
proof is complete.

Theorem 5. Assume that the hypotheses (A4)-(A8) hold. If for each
T > 0 and some K > 0, there exist functions (Hy,Hs) € H, %(t) €
C((0, 00); (0, 00)), such that

liii}pﬁHl(s,T) {Q(s) i (?S))/\z( T)}¢(s)ds>0 (23)

and

h?iigp/ Hy(t, s) { s) — LlLT(C;( ))Ag( )}w(s)ds > 0, (24)

then (1) has no eventually positive solutions.
Proof. For any T > tg, let a = 7" and choose T' = a in (23). Then there
exists ¢ > a such that

f " Hy(s, 0) {Q(s) - ir(?{'fn)@(s, a)} (a0 (25)
Next, choose T' = ¢ in (24). Then there exists b > ¢ such that
f Hy(b s){ “(“3(5))/\2(5 )} (s)ds > 0. (26)

Combining (25) and (26), we obtain (19). By the virtue of Theorem 4, the
proof is complete.

4. Oscillation criteria for Eq. (E)

In this section, by combining the results of Sections 2 and 3, we establish
sufficient conditions for oscillation of Eq. (E).

Using the Riccati inequality, we derive sufficient conditions for every so-
lution of hyperbolic equation (E) to be oscillatory. We are going to use the
following lemma which is due to Usami [11].
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Lemma. If there exists a function ¥ (t) € C*([Tp,0); (0,00)) such that

f: (ﬁ(;)(lgﬁ) . dt < o0,
fn Wfﬁ = 00,

" p()a(t)dt = oo
T1

for some Ty > Ty, then the Riccati inequality

2 (t) 1%@@)? < —q(0),

"B
where § > 1, B(t) € C([Tp, 0); (0,00)) and g(t) € C([Tp,o0);R), has no
solution on [T, 00) for all large T

Combining Theorems 1-3 and Lemma, we obtain the following theorem.
Theorem 6. Assume that the hypotheses (A1)-(A7) hold. If

[ (5.
/Tl Pg(tgw(wdt %,
: $(HQ()dE = oo,

where Pr(t) and Q(t) are defined by (11) and (12) for some K > 0, then
every solution u(xz,t) of (E), (B1) (or (E), (B2)) is oscillatory in .

Combining Theorems 1-2 and 4, we have the following theorem.

Theorem 7. Assume that the hypotheses (A1)-(A7) hold. If for each
T > 0 and some K > 0, there ezist functions (H1,H;) € H, ¥(t) €
C'((0,00);(0,00)) and a,b,c € R such that T < a < ¢ < b and (19) hold,
then every solution u(z,t) of (E), (B1) (or (E), (B2)) is oscillatory in S).

Analogously, combining Theorems 1-2 and 5 we derive the following.

Theorem 8. Assume that the hypotheses (A1)-(A7) hold. If for each
T > 0 and some K > 0, there ewist functions (Hy,Hs) € H, %(t) €
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CY((0,0); (0,00)) such that (23) and (24) hold, then every solution u(z,t)
of (E), (B1) (or (E), (B2)) is oscillatory in Q.

5. Examples

We present the following examples which illustrate the applicability of
our results.
Example 1. Consider the problem

2 (8 (ot + et ) - Lt

1
fie_“‘/_\u (:E, t+ g) — e Au(x,t — 27)

+e?tu(z,t —m) =0, (x,t) € (0,7) x [1,00), 27
i), 2)=ulm i) = 0 (28)

Heren=1,k=2,m=1,7@) = e, m(t) = 1/2, qi(z,t) = €*,01(t) = t—7
and ¢,(§) =1 = K. It is easy to see that

e |
.P[((t) = 56 B ; Q(t) = 56%.

By choosing
W(t) =%, Hy(s,t) = Halt, s) = (et _ 85)2,

we see that

=¥
=

le—t+ﬂ' _26—2t 2 o
2 ( ) ) =f 26—3t+ndt<oo:‘

/ (m) dt = / 2€3i_ﬂdt = 00,
jeT T X em

Choose now a =0, b = 27 and ¢ = 7 and observe that
1 T 1 1 4e?s
e e iy T —? 2) 2.2 0 To—%tmwm TV —23d
e GRS ol cf e Lt

1 " s 1 g 1 g 460 —2s
+(827r o e“)2f7r (e — &) {26 = 26 s (& — o2 e “ds = U
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that is, the condition (19) is satisfied. Also

£ 1 1 4e2
: T\2 2 —st -2
h?li‘.fpfq"(es_s ) {565_16 ) w(es—eT)Q}e e
. Lot er 1 3\ or | —tin  Tm
= limsup Ze —e +5 t—T+§ e +e —e >0
t—oo

and
: ‘ 2 [L o 1 2
lzﬂilpﬁ(et—ss) {56 = ie*”’”m e “*ds
1
3

= li?lso})lp { (% (t -T - %) - e“ST) e +ettT 4 %e“”“ - iew} = 1
that is, the conditions (23) and (24) hold. Thus, all the conditions of Theo-
rems 6-8 are satisfied. Therefore every solution u(z,t) of the problem (27),
(28) is oscillatory in (0, 00) x [1,00). For example, u(z,t) = sin z sin ¢ is such
a solution.

Example 2. Consider the problem

% (ﬁ% (u(a:,t) + %u(m,t - ZW))) ~ Au(z, §)

3 3 T
—mAu(:c,t —2m) — m.&u (:I‘, t+ 5)
Fulz,t — 1) =0, {251) € (Oim) % [1,00), (29)

—uz(0,t) = uy(m,t) = 0. (30)

Heren =1, k =2, m =1, 7(t) = (t + m)7%, h(t) = 1/2, qi(z,t) = 1,
o1(t) =t — 27 and ¢},(§) =1 = K. It is easy to see that

1 1

P~ = — = —,

If we choose 9(t) = t2, then

= [ (200 *2
2t2 —

o
B
=] s
X
\.M__./
&
Il
3



Next, choose ¥(t) = 1, Hi(s,t) = Ha(t,s) = (t — s)?, and a = 0, b = 2m,
¢ = . It is easy to see that

t ™ 571 T 41 :
;03{5‘@8—2}3‘“

1 [ 1 1 4
a2 2 s 2 L - 2 :
t3 ] (27 — s) {2 432(%#5)2}3 ds >0
Moreover,
3 1 11 4
li N 4 oF e e "
uglscgpfrp(s ) {2 452(‘9#,”2}8 ds
= limsup itS—ETt‘l—lezt?’—t—iT‘r’—l-T >0
npme il LT 6 60
and

t 1 11 4
= limsup {its — 1T%? + (ET‘* - 1) £ — iT5 +T} > 0.
t—oo | 60 6 ! 10
Thus, all the conditions of Theorems 6-8 are satisfied. Therefore, every
solution u(z,t) of the problem (29), (30) is oscillatory in (0,7) x [1,00). One
such solution is u(z,t) = cosz sint.
Observe, however, that

/m%(Q(siw)2+(sfﬂ)3)ds<oo,

and therefore the condition (8) of Theorem 2 given by Deng [2] is not satisfied.
Thus, Theorem 2 by Deng [2] can not be applied to this example.
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